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1. Introduction
Lithium-ion (Li-ion) battery is the key power unit for a variety of 

engineering equipments, including portable computers, electric au-
tomobiles, satellites, and spacecrafts, etc. With the increased cycles 
of charge-discharge, the battery’s capacity will deteriorate gradually, 
and when the capacity is inferior to a given threshold, failure may 
occur. This phenomenon will reduce the equipment’s reliability and 
even lead to catastrophic failures[31]. Therefore, it is crucial to timely 
forecast Li-ion battery’s capacity as well as its remaining useful life 
(RUL).

For Li-ion battery, its RUL can be defined as the number of remain-
ing charge-discharge cycles before the battery’s capacity deteriorates 
to a predetermined failure threshold [1]. The prediction methods for 
battery RUL can be categorized into three types, i.e. model-based ap-
proach, data-driven approach and hybrid approach [23]. Model-based 
approaches adopt mathematical representation or failure physics 
model to describe the degradation process of battery capacity, includ-
ing electrochemical model [14, 16, 25], equivalent circuit model [6] 
and empirical model [33], etc. Considering the interactions among 
the various factors and the calculation of the parameters, it is not easy 
to establish a reliable and accurate prediction model for the electro-
chemical model and equivalent circuit model. Conversely, by fitting 

a large amount of degradation data, empirical model is easier to be 
established [32].

Based on the battery’s historical operational data, data-driven ap-
proach can extract the feature information and obtain the inherent 
degradation tendency. As a kind of data-driven approach, time series 
analysis has been widely used in RUL prediction, including auto-
regressive (AR) [12], auto-regressive and moving average (ARMA) 
[18], auto-regressive integrated moving average (ARIMA) [39] and 
the improved models [13, 35]. In recent years, artificial intelligence 
(AI) algorithm becomes a hot point in data-driven approaches due to 
its powerful ability in self-learning and data mining. The frequently-
used AI algorithms include artificial neural network (ANN) [11, 21, 
30], support vector machine (SVM) [15, 26], relevance vector ma-
chine (RVM) [36], etc.

By combining two or more model-based or data-driven approach-
es, hybrid approach can overcome the limitations of a single method 
and thus improve the accuracy and efficiency of the prediction [5, 37]. 
Hybrid approach can be a combination of model-based approach and 
data-driven approach, and it can also be a combination of two or more 
types of data-driven approaches [1, 22].

In most existing studies, the Li-ion battery’s RUL is predicted with 
static capacity data. In fact, the battery’s remaining capacity can only 
be measured when it is out of service, meanwhile it also requires strict 
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testing conditions and environment. Therefore, it is difficult to be ap-
plied in engineering practice. To solve this problem, some other dis-
criminant criteria can be used to estimate the battery’s remaining ca-
pacity as well as its RUL, e.g. internal resistance [9, 10], incremental 
capacity analysis (ICA) [27, 28], open circuit voltage (OCV), entropy 
[2, 7, 29], etc [34]. Here, we call them the health indicators (HIs).

In this study, on the basis of battery’s operation data, a novel hybrid 
approach is proposed for estimating Li-ion battery RUL, and multiple 
HIs are adopted concurrently. Generally, there are three steps in it. 
Fig. 1 is the flowchart of the proposed method.

Step 1: Calculating HIs. Based on the data, including battery’s cur-
rent, voltage and working temperature, four types of HIs are built ac-
cordingly. They are calculated resistance (CR), rate of temperature 
change (TR), duration time of equal discharging voltage difference 
(DTEDVD) and sample entropy of discharge voltage (SampEn), re-
spectively.

Step 2: Estimating the remaining capacity. A generalized regres-
sion neural network (GRNN) with cross-validation is applied to esti-
mate the battery’s remaining capacity. To reduce the interference and 
improve the accuracy of the estimation, the wavelet denoising is per-
formed for two times and with different thresholds.

Step 3: Predicting RUL. With the estimated remaining capac-
ity, the battery’s RUL is predicted via the non-linear autoregressive 
(NAR) method.

Fig. 1. Process of the proposed approach

The remainder of this article is organized as follows. Section 2 in-
troduces the four HIs and their calculation methods respectively. Sec-
tion 3 illustrates the basic theory of GRNN, NAR and wavelet denois-
ing. Based on the Li-ion battery data from NASA, Section 4 conducts 
a case study of Li-ion battery RUL prediction, and the effectiveness 
of the proposed approach is illustrated. Conclusions and future works 
are given in Section 5.

2. Health indicators
To illustrate the discharging characteristics of the battery chang-

ing with the number of the charge cycles, in this study four HIs are 
extracted, they are CR, TR, DTEDVD and SampEn respectively. The 
value of the above four HIs will change with the increase of cycles, 
and the corresponding calculation methods are described as the fol-
lows.

2.1. Calculation of CR
For Li-ion battery, its internal resistance is closely related to the 

battery’s remaining capacity. Saha et al [19] found that the remaining 
capacity of Li-ion batteries is linearly related to the sum of their elec-
trolyte impedance and the charge transfer impedance.

CR is the measured internal resistance, which can be obtained with 
battery’s terminal voltage and current during its operating state. Fig. 
2 depicts the voltage and current’s change at the instant of battery 
discharge. When a constant DC current passes through the battery, the 
terminal voltage changes ΔUn at the time t1. At that time, the polariza-

tion effect has not occurred in the battery, therefore the voltage change 
is caused by ohm resistance. In this paper, the CR refers to the ohmic 
resistance Rn. According to Ohm’s Law, it can be obtained as [18]:

    1, 2, ,n
n

n

U
R n N

I
∆

= = …  (1)

where ΔUn is the voltage change caused by ohmic resistance of cycle 
n; In is the load current in cycle n; and N is the total cycle life of the 
battery.

Fig. 2. Pulse discharge response of the battery

2.2. Calculation of TR
During the discharging process, the battery’s internal tempera-

ture will change. Here we define TR as the rate that the temperature 
changes in the discharge process. TR will increase with the increase of 
cycles. In cycle n, TR can be calculated as follows:

 ( ) /     1, 2, ,n n
n e s nTR TP TP t n N= − = …  (2)

where TRn denotes the rate of temperature change in cycle n; TPe
n
 is 

the end temperature of cycle n; TPs
n
 is the initial temperature of cycle 

n; and tn is the duration time of cycle n’s discharge process.

2.3. Calculation of DTEDVD
For Li-ion battery, the time for full discharge will be shortened 

gradually with the increase of the cycles. Therefore, the duration time 
of equal discharging voltage difference (DTEDVD) will also be short-
ened with the increase of the cycles’ number. For a constant voltage 
interval [UL, UH]. We define 

n
Dt  as the duration time in cycle n when 

the voltage is reduced from UH to UL, as shown in Fig. 3.

      1, 2, ,n n n
D H Lt t t n N= − = …  (3)

where 
n
Dt  denotes the duration time of equal discharging voltage dif-

ference in cycle n; 
n
Ht denotes the moment that the discharge voltage 

is UH in cycle n; and 
n
Lt  denotes the moment that the discharge volt-

age is UL in cycle n.

2.4. Calculation of SampEn
Sample entropy (SampEn) was firstly proposed by Richman and 

Mooman to measure the complexity of time series [17]. In this study, 
we regard the discharging process as a time series, and the SampEn of 
discharge voltage is used as an HI for the Li-ion battery.
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For a given embedding dimension m, tolerance r as well 
as the number of data point T, we can obtain a time-series 
data set { }1 2 3, , ,..., TX x x x x=  with a constant time in-
terval τ. Here we define a template vector of length m,
X x x x m T mm ( ) ( ), ( ),..., ( ) , ,...,α α α α α= + + −[ ] = − +1 1 1 2 1 . The dis-
tance between two template vectors of ( )mX α  and ( )mX β  is de-
fine as [ ( ), ( )] ( )m m md X Xα β α β≠ . It can be any types of distance 
functions, including Euclidean distance, or Chebyshev distance.

( )mV α  is defined as the number of 
[ ( ), ( )]  ( )m m md X X rα β α β≤ ≠ , and the definition of the function 

is as the follows [28]:

 ( ) ( )1  1,2,..., 1
1

m mB r V T m
T mα α α= = − +
− +

 (4)
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where ( )mB r  represents the probability that two sequences will 
match for m points. Similarly, we can obtain 1( )mB r+ . Hence, the 
sample entropy can be defined as:

 
1( )( , , ) ln
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 (6)

3. Methodology
In this study, the battery’s remaining capacity is estimated with the 

proposed HIs. On this basis, by analyzing the degradation trend of the 
remaining capacity, the battery’s RUL is predicted.

GRNN is used to establish the mapping relationship between the 
HIs and the battery’s capacity, and hereafter to estimate the remaining 
capacity. Here, NAR model is used to demonstrate the degeneration 
of battery capacity. Moreover, wavelet denoising is applied to reduce 
the interference of the estimated capacity. Here, we illustrate the basic 
theories for GRNN, NAR and wavelet denoising as the follows.

3.1. Theory of GRNN
With a flexible network structure, GRNN model has strong ability 

for non-linear mapping. Therefore, it is suitable for solving non-linear 
problems [38].

Generally, there are four layers in GRNN, i.e. input layer, pat-
tern layer, summation layer, and output layer, as shown in Fig. 4. 

The input of the network is X=[ ]1 2, ,..., T
ex x x , and its output is  

Y=[ ]1 2, ,..., T
ky y y . d is the dimension of the input vector, k is the 

dimension of the output sample, and m is the number of the learning 
sample.

Fig. 4. Basic structure of the GRNN

Input layer: Among it, each neuron is a simple distribution (1) 
unit, which will transfer the input variable directly to the pat-
tern layer. In addition, the number of the input neurons in a 
GRNN equals to the dimension of the input vector e.
Pattern layer: The number of neurons equals to the number (2) 
of learning sample m. Each neuron corresponds to a different 
sample, and the neurons transfer function can be calculated 
as [36]:

 
( ) ( )

2exp         1, 2, ,
2
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X X X X
     (7)

where σ is the smoothing parameter; X is the input variable; and Xi 
is the corresponding learning sample of neuron i.

Summation layer: It sums the output of the pattern layer. In (3) 
this layer, two types of neurons are used for summation. The 
simple summation of the pattern outputs is determined with:

 
1

m

D i
i

S p
=

= ∑  (8)

And, the weighted summation of the pattern output can be deter-
mined by:

 
1

       1, 2, ,
m

Nj ij i
i

S y p j k
=

= = …∑  (9)

where yij is the weight of the i-th neuron in the pattern layer, which is 
connected to the summation layer.

Output layer: The results calculated in the summation layer (4) 
will be sent to the output layer. The number of neurons is equal 
to the dimension k of the output vector in the sample. The out-
put of the neurons is calculated as follows:

       1, 2, ,Nj
j

D

Sy j kS= = …  (10)

where yi is the output of the j-th node in the output layer.
In this study, the cross-validation is used to gain the optimized pa-

rameters.

3.2. Theory of NAR
Here, by combining the variable’s information during the early 

time, NAR model is used to describe the variable information at a 
particular time. It is a form of time series [8]:

Fig. 3. Duration time of equal discharging voltage difference
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 ( ) [ ( 1), ( 2), , ( )]y t f y t y t y t p= − − … −  (11)

where p is the delay time, namely the order of the neural network(NN); 
and ( )f ⋅  is the model of NAR.

The structure of NAR-NN is shown as in Fig. 5. It is consisted of 
four layers, i.e. input layer, hidden layer, output layer and the delay 
function.

Fig. 5. Structure of NAR-NN

In Fig.5, (1 )ux u p≤ ≤  is the input; y(k) is the output; W1 is the 
connection weight between the input layer and the hidden layer; W2 is 
the connection weight between the hidden layer and the output layer; 
and p is the delay time of the output.

The output of the node v in the hidden layer is:

 1
1

( )     1, 2, ,
p

v uv u v
u

h g w x c v V
=

= + =∑   (12)

where 1( )g ⋅  is the activation function of the hidden nodes; V is the 
number of the hidden nodes; ux  is the u-th delay output of the output 
signal y; uvw  is the connection weight between the hidden node u and 
the delay node v; and vc  is the v-th neural threshold of the hidden 
layer.

The output of NAR is:

 2
1

( )
V

v v
v

y g w h d
=

= +∑  (13)

where vw  is the connection weight between the hidden node v and the 
output node; and d is the neural threshold of the output layer.

3.3. Wavelet denoising
Wavelet analysis is a kind of method for signal analysis, which can 

separate the noise signals and extract effective data from the noise-
mixed data. In wavelet analysis, the data can be decomposed into two 
parts with the expansion and translation of the mother wavelet, i.e. 
approximate part and detail part [24].

Let H(x) denote the measured signal mixed with noise, the wavelet 
transform with the mother wavelet ψ(x) can be expressed as:

 ,
1( , ) ( ), ( ) ( ) ( )a b

x bc a b H x x H x
aa

ψ ψ
+∞

−∞

−
= = ∫      (14)

where a and b are the expansion and translation parameters of the 
mother wavelet respectively; and c(a, b) is the wavelet coefficient of 
H(x).

During the process of wavelet denoising, the selection of wavelet 
denoising threshold is closely related to the consequence of noise re-
duction. In this study, a twice denoising method with different thresh-

olds is applied [3, 4]. The first denoising threshold is made by the 
Sqtwolog method:

 2 logsqt Nλ =  (15)

And, the second denoising threshold is finished by the minimax 
method:

 
min 20.3936 0.1829logNλ = +  (16)

where N is the number of signal H(x). In this paper, it equals to the 
cycle life of the battery.

The thresholds of the above two methods are usually different, and 
the threshold of the Sqtwolog method is larger than that of the mini-
max method. Therefore, the first wavelet denoising can remove the 
lager noise signal, while the second wavelet denoising can remove 
the smaller noise signal. By using the twice wavelet denoising with 
different thresholds, the interference among the measured data can be 
reduced effectively.

3.4. Implementation of the proposed approach
Here, the training batteries are used to establish the mapping rela-

tionship between the HIs and the battery capacity. The basic steps for 
estimating battery RUL are described as follows:

Based on the historical operation data, the HIs of the training (1) 
batteries and testing batteries are calculated respectively.
By using the training batteries, train a GRNN model to estab-(2) 
lish the mapping relationship between the HIs and the battery’s 
capacity.
With the HIs data of testing batteries in the previous cycles, the (3) 
capacity of the testing batteries is estimated on the basis of the 
well-trained GRNN model.
The wavelet denoising is applied to deduce the noising of the (4) 
estimated capacity.
With the established capacity sequence and by using the NAR (5) 
model, the remaining capacity and RUL of the testing battery 
can be predicted.

4. Prognostics Experiment

4.1. Experiment Data and the Procedure
In this section, a case study is conducted to demonstrate the ef-

fectiveness and efficiency of the proposed approach, where the Li-
ion battery data come from the data repository of the NASA Ames 
Prognostics Center of Excellence (PCoE) [20]. Here, three groups of 
batteries are taken as examples, i.e. B05, B06 and B07. Among them, 
B05 and B06 are used as the training batteries, and B07 is used as the 
target battery. The experimental parameters of the discharge process 
are listed as in Table 1.

The capacity’s degradation trends with the cycles are shown as 
in Fig. 6. Obviously, the battery’s capacity shows a non-monotonic 
decline with the increase of the cycles. Meanwhile, the degradation 
is accompanied with the phenomena of capacity self-regeneration as 

Table 1. Discharging parameters of the NASA batteries

Battery No. T /℃ Idis/A Vup/V Vlow/V Cnew/Ah

B05 24 2 4.2 2.7 1.86

B06 24 2 4.2 2.5 2.04

B07 24 2 4.2 2.2 1.89



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 1, 2021180

well as local fluctuations. Therefore, it is essential to develop an ef-
fective prognostic approach to accurately estimate the capacity and 
predict its RUL by overcoming the uncertainty fluctuation.

Fig.6. Capacity degradation of tested batteries

4.2. Calculating HIs
In this section, by using the battery’s historical operation data 

(including current, voltage and temperature) during the discharging 

process, we calculate the HIs for batteries of B05, B06 and B07 re-
spectively. Fig. 7 shows the variation of the four HIs with the increase 
of cycles respectively.

Next, we calculate the Pearson correlation coefficient between the 
four HIs and the original capacity of Li-ion batteries, as shown in 
Table 2. Obviously, the HIs have a close correlation with the capacity. 
Furthermore, the DTEDVD has a negative correlation with the capac-
ity, while the other three HIs are in positive correlation.

4.3. Establishing GRNN model 
With the obtained HIs data, GRNN model is used to train and es-

tablish the mapping relationship between the HIs (input) and the ca-
pacity (output). In this study, the data of B05 and B06 batteries are 
used for training. On that basis, the well-trained GRNN model is used 
to estimate B07’s capacity with B07’s HIs. The predicted results are 
shown in Fig. 8. 

As shown in Fig. 8, the proposed method has a relatively high pre-
diction accuracy concerned with the capacity in the long-term trend. 
However, the predicted result is not so good for the first 40 points. 
The reason is that the HIs are not so stable during the early stage. 
Therefore, the first 40 points can be removed to obtain a more ac-
curate prediction result.

Moreover, the indicators, including root means square error 
(RMSE), the maximum estimation error and the maximum covari-
ance (cov) value, are utilized to evaluate the accuracy of the estima-

Fig. 7. Variations of the four HIs changing with the charging cycles

(d) Variations of SampEn(c) Variations of DTEDVD

(b) Variations of TR(a) Variations of CR
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tion results, as shown in Table 3. Obviously, the capacity estimation 
is with high accuracy.

4.4. RUL prediction
To remove the influence of self-regeneration phenomena and local 

fluctuations, a twice wavelet denoising is implemented with different 
thresholds. The result is shown as in Fig. 9. 

In this case, the threshold of Sqtwolog method is larger than that 
of minimax method. As shown in Fig. 9, the first denoising can only 
eliminate the large noise signal, and the second denoising can elimi-

nate the smaller noise signal. Thus, with the proposed twice wavelet 
denoising, the noise can be eliminated more thoroughly and a more 
accurate prediction can be obtained.

Based on the historical operation data, we can estimate the remain-
ing capacity for each past cycle with the above steps. In addition, by 
selecting the obtained data points as the input set, the future degraded 
capacity can be predicted with the NAR model. On that basis, we can 
obtain the corresponding value of the RUL. Here, the number of the 
hidden layer is set as 1, the delay time is 20. It is supposed that the 

Table 2. Correlation coefficient between HIs and capacity

Battery No. B05 B06 B07

CR -0.9791 -0.9893 -0.9658

TR -0.9947 -0.9819 -0.9901

DTEDVD 0.9988 0.9957 0.9990

SampEn -0.9522 -0.8936 -0.8876

Table 3. Accuracy analysis of the capacity estimation

Indicators All points Remove the first 40 points

RMSE 0.2002 0.0140

Max error 0.0823 0.0267

Max cov 0.0259 0.0110

Fig. 8. The estimated and tested capacity of B07

Fig. 9. The predicted capacity of B07

M=120

M=110

M=130

Fig. 10. Predictions for B07’s RUL under different M
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failure threshold of the battery capacity is 1.45Ah, and the total cycle 
life of B07 is 142. Here, we predict the B07’s RUL when the operated 
cycles (M) are 110, 120, 130 respectively. In addition, considering 
that there is randomness in the training model, the predicted RUL will 
change with the experiments, thus we repeat the experiments for 100 
times. Fig. 10 and Table 4 show some of the predicted results.

Set the range of the 100 predicted results as the RUL uncertainty 
bound (RUB). For the battery of B07, the RUB is shown as in Ta-
ble 5.

With the above predicted results, we can conclude that the pro-
posed methods can obtain the decline tendency of the Li-ion battery 
capacity with a high accuracy. However, the RUL’s predicted result 
is not so stable. The possible reason is that the tested life cycle of the 
battery is not long enough. Therefore, the training data are not suffi-
cient. Furthermore, considering that the capacity change during each 
cycle is too small, and a small error in capacity prediction may lead 
to a larger error in the RUL’s prediction. It can also be found that the 

range of RUB will be narrowed down with the increase of the input 
cycles. It shows that the RUL prediction is sensitive to the number of 
input data. Therefore, by increasing the number of the training sam-
ples, the stability and robustness of the predictions can be improved.

ARIMA model is also widely used in the battery’s RUL prediction 
[21]. To compare the characteristics of different prediction models, 
here we make a comparison for RUL prediction with the ARIMA 
model. For the same input, the ARIMA method has a unique predic-
tion result. Thus, the prediction results do not have a RUB. The RUL 
predicted results with ARIMA model are shown as in Table 6.

By comparing the three predicted results of different M, it can be 
found that for different M, the errors keep the same. It means that the 
prediction accuracy is not sensitive to the number of input cycles.

Comparing Table 4 and Table 6, it can be found that the predicted 
results of NAR model are more accurate than the results of ARIMA 
model. However, the predicted results are not as stable as the results 
of ARIMA model. Furthermore, since NAR model is sensitive to the 
number of the input data, the proposed NAR method is more suitable 
for large data set.

5. Conclusions
In this study, an innovative hybrid data-driven method is proposed 

to predict Li-ion battery’s RUL, which is based on multiple HIs, in-
cluding CR, TR, DTEDVD and SampEn. Furthermore, the GRNN 
model, NAR model and twice wavelet denoising are integrated. Case 
study shows that the proposed method can achieve Li-ion battery’s 
RUL prediction with a high accuracy. Compared with ARIMA model, 
NAR model is more sensitive to the size of training samples. Mean-
while, the proposed method is established on the basis of battery his-
torical data, it can overcome the limitation of online capacity meas-
urement approaches. Moreover, the proposed RUL prediction method 
does not concern the physical and chemical reactions in the battery, 
thus it is well suitable for other kinds of batteries.

The future works can be focused on the following aspects: (1) to 
improve the robustness of the RUL prediction results, the NAR model 
can be improved further. (2) new HIs can be searched for more stable 
prediction, especially for the initial stage. (3) new RUL prediction 
methods can be developed by considering various operating environ-
ments of the Li-ion batteries.
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